Как не ошибаться - Страница 147


К оглавлению

147

Напротив, Вольтер думал, что работой Паскаля движет религиозный фанатизм, который он презирал, и считал предположение Паскаля, что математика может объяснить находящееся за пределами наблюдаемого мира, не только неправильным, но и опасным. Вольтер охарактеризовал «хвалебное слово» Кондорсе как «прекрасное, но пугающее…». В личной переписке он предостерегал: «Если он [Паскаль] был столь великим человеком, тогда все мы полные идиоты, раз не способны мыслить так же, как он. Кондорсе причинит нам большой вред, если опубликует эту книгу в таком виде, в каком ее мне прислали». Здесь можно увидеть и вполне закономерные интеллектуальные различия, и ревнивое недовольство по поводу заигрываний своего любимчика со старым философским противником. В словах Вольтера почти прочитывается мысль: «Так на чьей ты стороне, парень, на его или на моей?» Кондорсе удалось избежать этого выбора (хотя в более поздних изданиях он все-таки отдал должное Вольтеру и несколько приглушил похвальный тон в адрес Паскаля). Он пошел на компромисс, объединив приверженность Паскаля широкому применению математических законов с радостной верой Вольтера в здравый смысл, секуляризм и прогресс.

В вопросах голосования Кондорсе был истинным математиком. Обыватель, взглянув на результаты выборов 2000 года во Флориде, мог бы воскликнуть: «Вот судьба! В итоге кандидат левого крыла повернул выборы в пользу республиканца», а изучив результаты выборов в Берлингтоне 2009 года, удивиться еще больше: «Вот странно! Центристский кандидат нравился практически всем и вылетел в первом же раунде». Математик воспринимает происходящее не как «странности поведения», а как интеллектуальную задачу. Можно ли точно определить, что именно делает эту ситуацию странной? Можно ли формально описать систему голосования, которая не была бы странной?

Кондорсе был уверен, что можно. Он сформулировал аксиому, или, иначе говоря, утверждение, которое считал абсолютно самоочевидным и не требующим доказательств. Вот аксиома Кондорсе:

...

Если большинство избирателей отдают предпочтение кандидату А перед кандидатом Б, тогда кандидат Б не может быть выбором народа.

Кондорсе с восхищением отзывался о работе Борда, но считал метод Борда неудовлетворительным по той же причине, по которой классический экономист считает иррациональным поведение слизевого гриба. В системе Борда, как и в случае голосования большинством голосов, включение третьей альтернативы может склонить чашу весов в пользу кандидата Б, а не кандидата А. Это нарушает аксиому Кондорсе: если кандидат А выиграл бы борьбу против кандидата Б на выборах с участием двух кандидатов, тогда Б не может победить в выборах с тремя кандидатами, одним из которых является кандидат А.

На основе своей аксиомы Кондорсе намеревался построить математическую теорию голосования подобно тому, как Евклид создал целую теорию геометрии на основе пяти аксиом о поведении точек, прямых и окружностей:

• существует прямая, соединяющая любые две точки;

• любой отрезок прямой можно расширить до отрезка прямой любой требуемой длины;

• для любого отрезка прямой L есть окружность с радиусом L;

• все прямые углы равны между собой;

• если P – это точка, а L – прямая, которая не проходит через Р, существует только одна прямая, проходящая через точку Р и параллельная прямой L.


Вообразите, что могло бы произойти, если кто-то сконструировал бы сложное геометрическое доказательство, показывающее, что аксиомы Евклида неизбежно приводят к противоречию. Подобное кажется совершенно невозможным, не так ли? Но имейте в виду, что в геометрии заложено множество тайн. Стефан Банах и Альфред Тарский в 1924 году показали, как можно разделить сферу на шесть частей, смешать их, а затем собрать из них две сферы того же размера. Разве такое возможно? Некоторые естественные системы аксиом по поводу трехмерных тел, их объема и движения, которые мы считаем истинными в силу своего опыта, не всегда бывают верными, какими бы интуитивно правильными они ни казались. Безусловно, фрагменты сфер Банаха – Тарского – невероятно сложные фигуры, а не объекты, которые можно представить в примитивном физическом мире. Поэтому, если вы задумали купить платиновый шар, разбить его на фрагменты Банаха – Тарского, сложить из этих фрагментов новые шары и повторять этот процесс до бесконечности, пока не будет получен вагон драгоценного металла, то вам вряд ли удастся это сделать.

Будь в аксиомах Евклида хоть какое-то противоречие, геометры пришли бы в ужас, и не без оснований, поскольку это означало бы, что одна или более аксиом, на которые они опирались, оказалась неправильной. Можно сказать и жестче: если в евклидовых аксиомах есть противоречие, то все точки, прямые и окружности, как Евклид понимал их, просто не существуют.

* * *

Именно с такой неприятной ситуацией столкнулся Кондорсе, когда открыл свой парадокс. Как показано на представленной выше , аксиома Кондорсе гласит, что Монтролл не может быть избран, поскольку он проигрывает в противостоянии один на один с Райтом. То же самое можно сказать о Райте, который проигрывает Киссу, и о Киссе, проигрывающем Монтроллу. Нет такой вещи, как выбор народа. Его просто не существует.

Парадокс Кондорсе стал серьезным вызовом для его мировоззрения, основанного на логике. Если есть объективно правильный рейтинг кандидатов, ситуация вряд ли может сложиться так, чтобы Кисс был лучше Райта, который лучше Монтролла, который лучше Кисса. Кондорсе вынужден был допустить, что при наличии таких примеров его аксиому придется ослабить: иногда большинство может оказаться неправым. Однако остается еще одна проблема: как рассеять туман сомнений и избавиться от противоречий, чтобы предугадать истинную волю народа – а в ее существовании Кондорсе никогда не сомневался.

147