Математика – это по большей части коллективная область деятельности, в которой каждое открытие является продуктом огромной сети умов, работающих над достижением общей цели, даже если мы приписываем честь этого открытия человеку, который закладывает последний камень в здание этих трудов. Очень хорошо сказал об этом Марк Твен: «Требуется тысяча человек, чтобы изобрести телеграф или паровой двигатель, или фонограф, или телефон, или еще что-нибудь столь же важное, а мы приписываем изобретение последнему из них и забываем об остальных».
Это напоминает американский футбол. Безусловно, существуют моменты, когда один игрок берет под свой контроль всю игру, и эти моменты мы запоминаем, отдаем им должное и впоследствии еще долго вспоминаем. Однако такие моменты не являются нормальным режимом игры в футбол, и не благодаря им команды одерживают победы в большинстве матчей. Когда квотербек делает быстро двигающемуся ресиверу блестящий пас, завершающийся тачдауном, вы видите согласованные действия многих людей – не только квотербека и ресивера, но и лайнменов нападения, которые сдерживали атаку защитников довольно долго, чтобы квотербек подготовился и бросил мяч, а это в свою очередь стало возможным благодаря ранинбеку, который в самый критический момент отвлек внимание защитников. Кроме того, есть еще и координатор нападения, который задал тон игры, а также его помощники с планшетами в руках, и тренеры, которые поддерживают игроков в хорошем состоянии, для того чтобы они могли бегать и бросать мяч… Никто не называет всех этих людей гениями. Но они создают условия, при которых гений может реализовать себя.
Терри Тао пишет:
...Популярный образ одинокого (и, может, немного сумасшедшего) гения, который игнорирует литературу и другие источники устоявшихся представлений и которому благодаря какому-то непостижимому вдохновению (возможно, усиленному мягким всплеском страдания) удается найти поразительно оригинальное решение задачи, поставившей в тупик всех специалистов, – это очаровательный и романтический образ, но абсолютно неправильный, во всяком случае в мире современной математики. Безусловно, в этой области действительно есть впечатляющие, глубокие и удивительные результаты и озарения, но они достаются тяжелым трудом и являются результатом многих лет, десятилетий или даже столетий упорной работы и успехов многих хороших и великих математиков. Переход от одного уровня понимания к следующему может быть в высшей степени нетривиальным и порой довольно неожиданным, но все же он опирается на фундамент предшествующей работы, а не начинается с чистого листа… На самом деле я считаю, что современные реалии математических исследований (когда прогресс достигается естественным образом, как следствие упорного труда, в основе которого лежит интуиция, литература и немного удачи) приносят гораздо большее удовлетворение, чем мои прежние романтические представления о математике как о науке, развивающейся в основном благодаря мистическому вдохновению некой редкой породы «гениев».
Я не утверждаю, что было бы неправильным называть Гильберта гением. Однако правильнее говорить, что гениально то, чего достиг Гильберт. Гениален не человек, гениально то, что он делает.
Политическая логика – это не формальная система в том смысле, который подразумевали Гильберт и другие специалисты по математической логике, но математики с формалистским мировоззрением не могли не подходить к политике с такими же методологическими предпочтениями. К этому их призывал сам Гильберт, который в своей лекции Axiomatic Thought («Аксиоматическое мышление»), прочитанной в 1918 году, отстаивал идею о том, что другие науки также должны взять на вооружение аксиоматический подход, оказавшийся столь успешным в математике.
Например, Гёдель, теорема которого исключила возможность окончательного изгнания противоречий из арифметики, был также обеспокоен Конституцией США, которую он изучал во время подготовки к экзамену на получение американского гражданства в 1948 году. Он считал, что этот документ содержит противоречие, которое может помочь фашистской диктатуре взять страну под свой контроль абсолютно конституционным путем. Друзья Гёделя Альберт Эйнштейн и Оскар Моргенштерн умоляли его избегать этой темы на экзамене, но, как вспоминает об этом Моргенштерн, беседа закончилась так:
...Экзаменатор. Итак, мистер Гёдель, откуда вы?
Гёдель. Откуда я? Из Австрии.
Экзаменатор. Какая власть действует у вас в Австрии?
Гёдель. Это была республика, но конституция была такой, что в итоге она превратилась в диктатуру.
Экзаменатор. О! Это очень плохо! В нашей стране такое невозможно.
Гёдель. Возможно, и я могу это доказать.
К счастью, экзаменатор поспешно сменил тему, и гражданство было предоставлено Гёделю надлежащим образом. Что касается характера противоречий, которые Гёдель обнаружил в Конституции США, скорее всего информация о них утрачена для истории математики. Может, это и к лучшему!
Приверженность Гильберта логическому принципу и дедукции часто приводила к тому, что он, подобно Кондорсе, часто придерживался на удивление современных взглядов по вопросам, не имеющим отношения к математике. Не без определенных политических последствий для себя он отказался подписать опубликованное в 1914 году «Обращение к культурному миру», которое оправдывало войну кайзера в Европе посредством длинного списка опровержений, начинавшихся со слов «Это неправда, что…»: «Это неправда, что Германия нарушила нейтралитет Бельгии» и так далее. Обращение подписали многие великие немецкие ученые, такие как Феликс Клейн, Вильгельм Рентген и Макс Планк. Гильберт, не имея уверенности, что все эти утверждения соответствуют истине, отказался поставить свою подпись.