Как не ошибаться - Страница 174


К оглавлению

174

35

Российским ученым известно со школы, что пифагоровы штаны во все стороны равны. Прим. М. Г.

36

На самом деле нельзя, но до XVIII века никто не смог это доказать.

37

В действительности силосные башни не были круглыми до начала ХХ века, когда профессор Висконсинского университета Хорас У. Кинг не придумал – чтобы решить проблему порчи продукции, лежащей в углах башни, – цилиндрическую конструкцию, широко распространенную в наше время.

38

Точнее говоря, каждый из этих четырех фрагментов можно получить из исходного равнобедренного прямоугольного треугольника, вращая его по кругу на плоскости. Давайте примем без доказательств тот факт, что такие манипуляции не меняют площадь фигуры.

39

Во всяком случае, если вы, как и я, живете на Среднем Западе США.

40

Математический объект, который в каждой точке локально выглядит как обычное евклидово пространство, называется многообразием. Пример одномерного многообразия – окружность или любая другая кривая без углов и концов, например парабола. Примеры двумерных многообразий: сфера – поверхность шара; тор – поверхность баранки; крендель – поверхность кренделя; бутылка Клейна – в нашем обычном трехмерном пространстве невозможно представить эту поверхность, бутылка Клейна получается, если вытянуть горлышко обычной бутылки и соединить ее с донышком, предварительно проделав в нем дырку нужного размера и потом сгладив место соединения; фокус состоит в том, что вставить надо с внутренней стороны, иначе получится обычный тор, и при этом без пересечения стенки бутылки. Некоторые свойства многообразий описывает, в частности, уже упоминавшаяся гипотеза Пуанкаре. Прим. М. Г.

41

Дж. Беркли. Аналитик, или Рассуждение, адресованное неверующему математику… // Беркли Дж. Сочинения / Сост., общ. ред. и вступит. ст. И. С. Нарского; пер. А. Ф. Грязнова, Е. Ф. Дебольской, Е. С. Лагутина, Г. Г. Майорова, А. О. Маковельского. М.: Мысль, 1978. С. 425–426. Прим. М. Г.

42

При отсутствии воздействия силы тяжести, сопротивления воздуха и т. д. и т. п. Однако на коротком интервале времени такое линейное приближение является достаточно точным.

43


Самое время обратиться к Пушкину:
Движенья нет, сказал мудрец брадатый.
Другой смолчал и стал пред ним ходить.
Сильнее бы не мог он возразить;
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день пред нами Солнце ходит,
Однако ж прав упрямый Галилей.

44

По правде сказать, речь идет о подростках из летнего математического лагеря.

45

Есть объект, 2-адические числа, для которых этот довод, на первый взгляд бредовый, абсолютно корректен.

Согласно теории Коши, сходимость ряда к пределу x означает, что когда вы суммируете все больше и больше членов этого ряда, итоговая сумма все больше приближается к значению x. Чтобы понять это, мы должны представлять, что значит «близость» двух чисел друг к другу. Оказывается, знакомое нам значение слова «близость» не единственное! В мире 2-адических чисел два числа считаются близкими друг к другу, если разность между ними представляет собой величину, кратную большой степени числа 2. Когда мы говорим, что ряд 1 + 2 + 4 + 8 + 16 + … сходится к значению −1, мы тем самым утверждаем, что частичные суммы 1, 3, 7, 15, 31… все больше приближаются к −1. В обычном понимании «близости» это не так, однако при использовании понятия 2-адической близости ситуация обстоит совсем иначе. Разность между числами 31 и −1 равна 32, что составляет достаточно малое 2-адическое число 25. Просуммируйте еще несколько членов этого ряда – и получите число 511, которое отличается от −1 на 512, еще меньшую величину (в 2-адическом смысле). Большая часть математики, которую вы знаете (анализ, логарифмы и экспоненциальные функции, геометрия), имеет аналог в мире 2-адических чисел (а также аналог в мире p-адических чисел для любого p). Взаимодействие между всеми этими концепциями близости являет собой отдельную историю – умопомрачительную и недосягаемо прекрасную.

46

Сюрреальные числа, которые описал Джон Конвей, – это особенно очаровательный и причудливый пример, о чем говорит само название. Этот класс чисел, глубинные аспекты которого еще не изучены, представляет собой удивительный гибрид чисел и стратегических игр. Полезную информацию об этих экзотических числах, а также многих математических методах ведения игр можно найти в труде Элвина Берлекэмпа, Джона Хортона Конвея и Ричарда Гая Winning Ways… («Выигрышные стратегии в математических играх»), см.: Elwyn R. Berlekamp, John H. Conway, Richard K. Guy. Winning Ways for Your Mathematical Plays. Natik MA: A K Peters/CRC Press. 2 ed. Vol. 1–4. 2001–2004.

47

Подобно всем математическим прорывам, теория пределов Коши имела предшественников; в частности, определение Коши было во многом созвучно с концепцией границ величины погрешности биномиального ряда Д’Аламбера. Однако нет никаких сомнений, что работа Коши представляла собой переломный момент: после него анализ стал таким, каким мы его знаем сейчас.

48

Г. Г. Харди. Расходящиеся ряды / Пер. с англ. Д. А. Райкова. М.: Изд-во иностранной литературы, 1951. С. 19. Прим. ред.

49

Есть какая-то ирония в том, что первоначально Гранди нашел своим расходящимся рядам теологическое применение!

174