На этот счет можете быть спокойны. Выдвигать предположение об истинности того, что мы втайне считаем ложным, – это проверенный временем метод аргументации, восходящий еще к Аристотелю. Речь идет о доказательстве от противного, reductio ad absurdum. Подобное доказательство – своего рода математическое дзюдо, в ходе которого мы сначала утверждаем, что в конечном счете хотим опровергнуть, планируя перебросить его через плечо и победить посредством его же собственной силы. Если гипотеза приводит к ложным выводам, тогда и сама гипотеза должна быть ошибочной. Следовательно, план действий сводится к следующему:
• предположим, гипотеза Н истинна;
• из гипотезы Н вытекает, что определенный факт F не может иметь место;
• однако факт F имеет место;
• следовательно, гипотеза Н ошибочна.
Предположим, кто-то скажет вам, что во время массовой стрельбы в округе Колумбия погибло двести детей. Это гипотеза. Однако проверить такую гипотезу может быть достаточно трудно (я имею в виду, что, если ввести в поисковик Google фразу «количество детей, погибших от огнестрельного оружия в округе Колумбия в 2012 году», прямой ответ получить не удастся). С другой стороны, если мы предположим, что эта гипотеза истинна, тогда в округе Колумбия в 2012 году не могло быть меньше двухсот случаев насильственной смерти. Однако на самом деле таких случаев было меньше – всего восемьдесят восемь. Следовательно, гипотеза человека, сообщившего вам об этом, должна быть ошибочной. Здесь нет никакого замкнутого круга в доказательстве: мы приняли ошибочную гипотезу в качестве предварительного, пробного предположения, тем самым создали противоречащий фактам воображаемый мир, в котором истинна данная гипотеза Н, а затем наблюдали за тем, как этот мир разваливается под натиском реальности.
В такой формулировке метод доказательства от противного кажется почти элементарным, и в каком-то смысле так оно и есть, но, наверное, было бы правильнее сказать, что это инструмент мышления, к использованию которого мы слишком привыкли и часто забываем, насколько он эффективен. В действительности именно простой метод от противного лежит в основе сформулированного Пифагором доказательства иррациональности квадратного корня из двух – доказательства, которое оказывало настолько разрушительное воздействие на существовавшую в то время систему понятий и воззрений, что его автора пришлось убить. Это настолько простое, изящное и компактное доказательство, что я могу записать его на паре страниц.
Предположим, гипотеза Н состоит в следующем:
Н – квадратный корень из двух есть рациональное число.
Другими словами, мы предположили, что √2 – это число, представленное в виде дроби m/n, где m и n – целые числа. Эту дробь можно привести к несократимому виду: если у числителя и знаменателя есть общий делитель, их можно сократить, сохранив дробь неизменной: нет смысла писать 10/14 вместо более простой дроби 5/7. Давайте перефразируем нашу гипотезу:
Н: квадратный корень из 2 равен m/n, где m и n – целые числа, не имеющие ни одного общего делителя.
В действительности это означает, что оба числа m и n не могут быть четными. Если предположить, что оба числа четные, это равносильно тому, чтобы сказать, что у них общий делитель 2. В таком случае, как и в случае дроби 10/14, можно было бы сократить числитель и знаменатель на 2, не изменив саму дробь, а значит, у нас была бы дробь, не приведенная к простейшему виду. Следовательно, утверждение
F: m и n есть четные числа
ложное.
Поскольку √2 = m/n, после возведения обеих частей этого уравнения в квадрат мы увидим, что 2 = m²/n², или, что то же самое, 2n² = m². Следовательно, m² – это четное число, а это значит, что само число m также четное. Число является четным, если его можно представить в виде произведения числа 2 на другое целое число, а значит, мы можем записать число m в виде 2k, где k – целое число. Это означает, что 2n² = (2k)² = 4k². Сократив обе стороны на 2, мы получим n² = 2k².
В чем смысл всех этих алгебраических преобразований? Просто показать, что n² равно двум k², а значит, это число четное. Но если n² четное число, тогда и само n должно быть четным, так же как и m. Но это означает, что утверждение F истинно. Выдвинув гипотезу H, мы пришли к ошибочному и даже абсурдному выводу, что утверждение F истинно и ложно одновременно. Следовательно, гипотеза H должна быть ошибочной. Квадратный корень из 2 – это не рациональное число. Предположив, что оно является таковым, мы доказали, что это не так. На самом деле довольно странный прием, но он работает.
Проверку значимости нулевой гипотезы можно представить как несколько размытую версию доказательства от противного:
• предположим, нулевая гипотеза Н истинна;
• из гипотезы Н вытекает, что некий результат О очень маловероятен (скажем, не превышает порог Фишера 0,05);
• однако результат О был установлен посредством наблюдений;
• следовательно, вероятность Н крайне мала.
Другими словами, мы имеем здесь не доказательство от противного, а доказательство от маловероятного.
Классический пример такого доказательства привел астроном и священник XVIII столетия Джон Митчелл, который одним из первых использовал статистический подход к изучению небесных тел. За скоплением тусклых звезд в одном углу созвездия Тельца наблюдала едва ли не каждая цивилизация. В племени навахо это скопление называют Dilyehe, «Сверкающая фигура», в племени маори – Matariki, «Глаз Бога». Для древних римлян это была гроздь винограда, у японцев это Subaru (если вдруг вам интересно, почему на логотипе компании изображено шесть звезд). Мы называем это звездное скопление Плеядами.