Как не ошибаться - Страница 100


К оглавлению

100

124

135

167

257

347

236

456


Предположим, в розыгрыше лотереи выпадают числа 1, 3 и 7. Это значит, что у Харви три двойки – 135, 167 и 347. А что если выпадут номера 3, 5 и 6? Тогда у Харви снова было бы три двойки – 135, 236 и 456. Продолжив перебирать возможные комбинации, вы вскоре увидите, что у всех вариантов Харви есть одно особое свойство: он выиграет либо джекпот, либо в точности три двойки. Вероятность того, что среди билетов Харви есть билет, выигравший джекпот, – 7 из 35, или 20 %. Таким образом, вероятность двоек среди лотерейных билетов Харви такова:


вероятность полного отсутствия двоек составляет 20 %;

вероятность трех двоек составляет 80 %.


Следовательно, ожидаемое количество двоек в случае Харви равно:


20 % × 0 + 80 % × 3 = 2,4.


Другими словами, это то же самое значение, как и должно быть. Однако во втором случае дисперсия гораздо меньше, а значит, у Харви почти нет сомнений в том, сколько двоек он получит. Что делает портфель Харви гораздо более привлекательным для потенциальных членов его группы. Обратите особое внимание на следующее: каждый раз, когда у Харви нет трех двоек, он выигрывает джекпот. Следовательно, стратегия Харви гарантирует довольно большой минимальный выигрыш – выигрыш, который вряд ли получится у игроков, подобных Селби, выбирающих числа с помощью функции Quic Pic. Самостоятельно выбирая числа, вы можете устранить риск и в то же время получить вознаграждение – если только выберете правильные числа.

Как это сделать? Вопрос на миллион долларов – в данном случае в буквальном смысле слова.

Рассмотрим первый способ, когда можно просто попросить свой компьютер сделать это. Харви и члены его команды были студентами MIT, скорее всего, способными написать несколько дюжин строк кода еще до утренней чашки кофе. Почему просто не придумать программу, которая перебрала бы все комбинации 300 тысяч билетов лотереи WinFall в поисках стратегии с самой низкой дисперсией?

Написать такую программу было бы не трудно. Есть только одна небольшая проблема: всю материю и энергию во Вселенной постигла бы тепловая смерть, прежде чем ваша программа обработала бы первый крохотный фрагмент мельчайшего клочка данных, которые вы пытаетесь проанализировать. Для современного компьютера 300 тысяч – не слишком большое число. Однако объекты, которые должна перебрать предложенная программа, – не 300 тысяч билетов, а возможные наборы 300 тысяч билетов, которые предстоит купить из 10 миллионов возможных билетов лотереи Cash WinFall. Сколько всего таких наборов? Больше 300 тысяч. Больше количества субатомных частиц, существующих или когда-либо существовавших во Вселенной. Намного больше. Скорее всего, вы даже не слышали о настолько большом числе, как количество способов выбора ваших 300 тысяч билетов.

Здесь мы столкнулись с ужасающим феноменом, который программисты называют «комбинаторный взрыв». Говоря простым языком, очень простые операции могут превратить приемлемо большое количество вариантов в абсолютно не поддающееся обработке количество. Если вы хотите узнать, какой из пятидесяти штатов является самым выгодным местом для размещения вашего бизнеса, определить это не составит труда – довольно просто сопоставить пятьдесят разных объектов. Но если вам необходимо определить, какой маршрут передвижения через все пятьдесят штатов наиболее эффективен (так называемая задача коммивояжера), произойдет комбинаторный взрыв, и вы столкнетесь с трудностями совсем другого порядка: вам предстоит делать выбор из 30 вигинтиллионов маршрутов. В более знакомых терминах это 30 тысяч триллионов триллионов триллионов триллионов.

Следовательно, чтобы снизить уровень дисперсии, нам лучше найти другой способ выбирать лотерейные билеты. Поверите ли вы мне, если я скажу, что все сводится к планиметрии?

Где железнодорожные рельсы пересекаются…

Параллельные линии не пересекаются. Это и делает их параллельными.

Но иногда параллельные линии выглядят так, будто пересекаются. Вспомните о паре железнодорожных рельсов в пустынной местности, которые как будто сходятся в одной точке, по мере того как ваш взгляд перемещается по ним все ближе к горизонту. (По моему мнению, мысленный образ встречающихся друг с другом двух рельсов станет еще ярче, если включить музыку в стиле кантри.) Здесь имеет место феномен перспективы; когда вы пытаетесь отобразить трехмерный мир в двумерном поле зрения, чем-то придется пожертвовать.

Первыми, кто разобрался с этим явлением, оказались люди, которым было необходимо постичь: во-первых, суть объектов; во-вторых, как они выглядят; в-третьих, разницу между реальным объектом и его визуальным образом. Речь идет о художниках. Когда в начале эпохи итальянского Возрождения художники поняли феномен перспективы, визуальное представление изменилось навсегда: с этого момента картины европейских художников перестали напоминать рисунки ваших детей на дверце холодильника (в том случае, если ваши дети рисуют в основном распятого на кресте Иисуса) и стали похожими на то, что на них изображено.

Вопрос, как именно флорентийские художники, например Филиппо Брунеллески, пришли к пониманию современной теории перспективы, стал предметом множества дискуссий среди искусствоведов. Мы не будем вдаваться в детали их споров. Но мы наверняка знаем: этот прорыв стал возможен благодаря соединению эстетических соображений с новыми идеями в области математики и оптики. Отправной точкой стало понимание, что изображения, которые мы видим, формируются лучами света, отражающимися от объектов и попадающими в наши глаза. Современному человеку это кажется очевидным, но в те времена, поверьте, было далеко не так. Многие ученые древности – самый известный из них Платон – утверждали, что одним из элементов зрительного восприятия должен быть некий огонь, который испускают глаза. Эта точка зрения восходит как минимум к Алкмеону Кротонскому; считается, что на его мировоззрение повлияло учение Пифагора и пифагорейской школы (о взглядах пифагорейцев шла речь во ). Алкмеон утверждал, что глаза должны испускать огонь, иначе из какого еще источника могут появляться фосфены – звезды, которые вы видите, когда закрываете глаза и надавливаете пальцем на глазное яблоко? Теорию зрительного восприятия посредством отраженных лучей разработал на довольно подробном уровне каирский математик XI столетия Абу Али аль-Хасан ибн аль-Хасан ибн аль-Хайсам аль-Басри (но давайте называть его Альхазеном, как делают большинство западных авторов). Трактат Альхазена об оптике Kitab al-Manazir («Книга оптики») был переведен на латинский язык и с воодушевлением принят философами и художниками, искавшими более систематическую трактовку связи между взглядом и тем, на что он направлен. Основная мысль сводится к следующему: точка Р на вашем холсте представляет прямую линию в трехмерном пространстве. Благодаря Евклиду мы знаем, что существует только одна прямая линия, которая проходит между двумя заданными точками. В данном случае это линия, которая проходит через точку Р и ваш глаз. Любой объект, расположенный на этой линии, необходимо рисовать в точке Р.

100